COURSE #: CHE 330		COURSE TITLE: CHEMICAL & ENGINEERING	
		THERMODYNAMICS	
TERMS OFFERED: Winter		PREREQUISITES:	
		ChE 230 Material and Energy Balances	
TEXTBOOKS/REQUIRED MATERIAL: Sandler, Stanley I., Chemical,		COGNIZANT FACULTY: Glotzer, Lin, Scott, Ziff	
Biochemical, and Engineering Thermodynamics, 4th ed., John Wiley & Sons, Inc. 2006,			
ISBN: 978-0-471-66174-0			
INSTRUCTOR: Scott		FACULTY APPROVAL: 2013-12-19	
CoE BULLETIN DESCRIPTION:		COURSE TOPICS: (number of hours in parentheses)	
Development of fundamental thermodynamic property relations and complete energy		1. Thermodynamic concepts, definitions (3)	
and entropy balances. Analysis of heat pumps and engines, and use of combined		2. Mass and energy balances, enthalpy (3)	
energy-entropy balance in flow devices. Calculation and application of total and partial		3. Entropy balance and irreversibility (4)	
properties in physical and chemical equilibria. Prediction and correlation of		4. Equations of state, heat capacity calculations (4)	
physical/chemical properties of various states and aggregates. Elements of statistical		5. Thermodynamic relations, changes (5)	
thermodynamics.		6. Thermodynamics of multi-component systems (7)	
		7. Phase equilibrium for multi-component systems (6)	
		8. Chemical reaction thermodynamics (5)	
COURSE STRUCTURE/SCHEDULE: Lecture: 3 per week @ 1 hour; Discussion: 1 per week @ 1 hour			
	Links shown in brackets are to course outcomes that satisfy these objectives.		
	Provide students with a lasting and solid understanding of thermodynamics. [1-5]		
	Effectively teach fundamental concepts such as enthalpy, entropy, fugacity, free energy, and chemical potential. [1-4]		
COURSE	Teach students how to set up and solve thermodynamics problems. [1-5]		
OBJECTIVES	Equip students to estimate or locate necessary thermodynamic data. [2,5]		
		hemical engineering processes and process safety, biological sciences, energy,	
	and environmental sciences. [1]		
	Provide opportunities for students to become proficient using computer tools for solving problems. [1, 3, 5]		
	Links shown in brackets are to student outcomes a-k		
		Apply the laws of thermodynamics to chemical engineering processes. [a,e]	
COURSE		Calculate differences in thermodynamic properties using equations of state, charts and tables, and computer resources. [k]	
COURSE		Solve problems dealing with multi-phase chemical systems and reactive systems. [e]	
OUTCOMES	Explain the molecular basis of thermodynamics. [a]		
	5. Interpret thermodynamic data for applications in chemical engineering processes, process safety, biological sciences, energy, and		
	environmental sciences. [b]		
ACCECCMENT	 Weekly homework problems assess course outcomes 1-5. Written examinations assess course outcomes 1-5. 		
ASSESSMENT	 Written examinations assess course outcomes 1-5. Group assignments assess course outcomes 1-3, and 5. 		
TOOLS	 Group assignments assess course outcomes 1-3, and 5. End of term course evaluation provides student self-assessment of course outcomes 1-5. 		
4. End of term course evaluation provides student sen-assessment of course outcomes 1-3.			