COURSE #: CHE 341		COURSE TITLE: FLUID MECHANICS	
TERMS OFFERED: Winter		PREREQUISITES:	
		Physics 140, General Physics I, Math 215, Calculus III, preceded or	
		accompanied by ChE 230, ,Material and Energy Balances, and Math 216,	
		Introduction to Differential Equations	
TEXTBOOKS/REQUIRED MATERIAL: Wilkes, James O., Fluid Mechanics for		COGNIZANT FACULTY: Glotzer, Lahann, Linderman, Monroe, Nagrath	
Chemical Engineers, 2 nd Edition, Upper Saddle River, NJ, Prentice Hall, 2006,			
ISBN: 0-13-148212-2			
INSTRUCTOR: Burns		FACULTY APPROVAL: 2013-12-19	
CoE BULLETIN DESCRIPTION:		COURSE TOPICS: (approximate number of hours in parentheses)	
Fluid Mechanics for chemical engineers. Mass, momentum, and energy balance on		1. Hydrostatics, mass, energy, momentum balances (11)	
finite and differential systems. Laminar and turbulent flow in pipes, equipment, and		2. Flow through pipes and chemical engineering equipment (7)	
porous media. Polymer processing and boundary layers. Potential, two-phase, and non-		3. Differential equations of fluid mechanics (5)	
Newtonian flow.		4. Viscous and potential flow problems (5)	
		5. Boundary layers, nearly 1-D flows (2)	
		6. Turbulent flow, non-Newtonian fluids, microfliuidics (4)	
		7. Numerical solutions and dimensionless analysis (4)	
COURSE STRUCTURE/SCHEDULE: Lecture 3 per week @ 1 hour; Discussion: 1 per week @ 1 hour			
	Links shown in brackets are to course outcomes that satisfy these objectives.		
	1. Provide students with a lasting and solid understanding of fluid mechanics. [1-8]		
COURSE	2. Effectively teach fundamental concepts in fluid mechanics, including mass, energy and momentum balances. [2]		
OBJECTIVES	3. Teach students how to properly set up and solve fluid mechanics problems both analytically and numerically where appropriate. [2-8]		
	4. Introduce students to chemical engineering processes and eq	uipment where fluid flow is involved. [4]	
	Links shown in brackets are to student outcomes a-k		
	1. Knowledge of fundamental concepts in fluids, such as density, viscosity, pressure, stress/strain rate, etc. [a,e,k]		
COURSE	2. Ability to apply mass, energy, and momentum balances to hydrostatic and fluid flow problems. [a,e,k]		
OUTCOMES	3. Ability to analyze laminar and turbulent frictional flow in pipes and piping networks. [a,c,e,k]		
	4. "Ability to analyze fluid flow in chemical engineering equipment. including fluid drag on particles, solid separation systems and packed		
	beds [a,c,e,k]	- las dins to the Marian Stalans and in a dame them to salar fluid flam.	
	5. Ability to set up the differential equations of fluid mechanics leading to the Navier-Stokes equations, and use them to solve fluid flow problems both analytically and numerically, as well as using existing CFD software packages. [a,e,k]		
	6. Ability to analyze boundary layer flows. [a,e,k]		
	7. Ability to solve problems involving Newtonian and non-Newtonian fluids. [a,e,k].		
	8. Ability to analyze micron scale or smaller flows. [a,e,k]		
	1. Homework problems assess outcomes 1-8.		
ASSESSMENT	 Homework problems assess outcomes 1-8. Written examinations assess outcomes 1-8. 		
TOOLS	 Written examinations assess outcomes 1-o. End of term course evaluation provides student self-assessment of outcomes 1-8 		
10015	5. End of term course evaluation provides student sen-assessment of outcomes 1-0		