COURSE #: CHE 344		COURSE TITLE: REACTION ENGINEERING & DESIGN
TERMS OFFERED: Winter		PREREQUISITES: ChE 330 Chemical & Engineering Thermodynamics: ChE 342
		Heat and Mass Transfer
TEXTBOOKS/REQUIRED MATERIAL: Fogler, The Essentials of Chemical		COGNIZANT FACULTY: Barteau, Fogler, Linic, Thompson, Thurber
Reaction Engineering, Upper Saddle River, NJ, Prentice Hall, 2011		
INSTRUCTOR: Fogler		FACULTY APPROVAL: 2013-12-19
CoE BULLETIN DESCRIPTION:		COURSE TOPICS: (number of hours in parentheses)
Fundamentals of chemical reaction engineering. Rate laws, kinetics, and		1. Mole Balances (4)
mechanisms of homogeneous and heterogeneous reactions. Analysis of rate		2. Rate Laws and Stoichiometry (6)
data, multiple reactions, heat effects, bioreactors, Safety (Runaway Reactions).		3. Isothermal Reactor Design (10)
Design of industrial reactors.		4. Analysis of Data (2)
		5. Multiple Reactions (4)
		6. Energy Balances (8)
		7. Safety (2)
		8. Catalysis (3)
		9. Bioreactions and reactors (1)
COURSE STRUCTURE/SCHEDULE: Lecture: 2 per week @ 2 hours each		
	Links shown in brackets are to course outcomes that satisfy these objectives.	
	1. To train students how to analyze chemical reactors and re	
COURSE		
OBJECTIVES	3. To provide experience for students to solve open-ended reaction engineering problems in teams. [6-7]	
	4. To provide practice with computer software and simulati	on relating to chemical reaction engineering. [6]
	Links shown in brackets are to student outcomes a-k 1. Describe the algorithm that allows the student to solve chemical reaction engineering problems through logic rather than memorization. [i,k	
	 Size isothermal and non-isothermal reactors for homogeneous and heterogeneous reactions. [a,c,d,e,k] Analyze multiple reactions carried out both isothermally and non-isothermally in flow, batch and semi batch reactors to determine 	
COUDEE		and non-isothermally in flow, batch and semi batch reactors to determine
COURSE	OURSE selectivity and yield. [d,e,i] UTCOMES 4. Determine the reaction order and specific reaction rate from experimental data. [b] 5. Describe the steps in a catalytic mechanism and how one goes about deriving a rate law, mechanism, and rate-limiting step that are	
OUTCOMES		
	consistent with experimental data. [a,b,c,e,k]	
	6. Carry out computer simulation of reactors with multiple reactions with heat effects. [a,c,e,i,k]	
	7. Work together to solve both open-ended and closed-ended reaction engineering problems. [d,e,g]	
	 Work together to solve bolt open-ended and closed-ended reaction engineering problems. [d,e,g] Write questions that demonstrate critical and creative thinking on reaction and reactor safety. [d,e,g] Use relevant theory to describe the molecular basis for elementary chemical reaction rates. [a] 	
	1. Home problem assignments assess outcomes 1-9	
ASSESSMENT 2. Examinations assess outcomes 1-6,9		
TOOLS	 B. Open ended problem assesses outcome 7 	
	 End of term course evaluation provides student self-asse 	essment of outcomes 1-9
The of term course evaluation provides student sen assessment of outcomes 1 7		