COURSE #: CHE 466		COURSE TITLE: PROCESS DYNAMICS AND CONTROL	
TERMS OFFERED: Fall		PREREQUISITES:	
		ChE 343 Separation Processes	
		ChE 344 Reaction Engineering and Design	
TEXTBOOKS/REQUIRED MATERIAL: D. E. Seborg, D. A. Mellichamp, T. F.		COGNIZANT FACULTY: Larson, Lin, Linic, Wang, Ziff	
Edgar, and F. J. Doyle III, Process Dynamics and Control (3rd Ed.) (Wiley 2010) ISBN			
978-0-470-12867-1			
INSTRUCTORS: Ziff		FACULTY APPROVAL: 2014-03-24	
CoE BULLETIN DESCRIPTION:		COURSE TOPICS: (approximate number of hours in parentheses)	
Introduction to process control in chemical engineering. Control architecture design,		1. P&ID (Piping and Instrumentation Diagrams), sensors and valves (8)	
notation, and implementation. Mathematical modeling and analysis of open-loop and		2. Analysis of unsteady-state models of unit operations (12)	
closed-loop process dynamics. Applications to the control of level, flow, heat		3. Tuning of PID (Proportional-Integral-Derivative) controllers (4)	
exchangers, reactors, and elementary multivariable systems. Statistical process control		4. Feed-forward, Cascade, Ratio and advanced control strategies (10)	
concepts.		5. Optimization, statistical process control (4)	
COURSE STRUCTURE/SCHEDULE: Lecture: 2 per week @ 1.5 hours			
	Links shown in brackets are to course outcomes that satisfy these objectives.		
COURSE	1. To provide a conceptual and methodological framework for describing a process and its control system. [1-6]		
OBJECTIVES	2. To provide a conceptual and methodological framework for processes [3-7]	quantitatively analyzing and evaluating automatic control systems for chemical	
	Links shown in brackets are to student outcomes a-k.		
	 Draw piping and instrumentation diagrams following accepted standards and using appropriate symbols [c,e,k]. Explain the operation of sensors and valves, including appropriate placement and linking [c]. 		
COURSE	3. Formulate unsteady state models for common unit operations, and solve the resulting differential equations using analytical and numerical		
OUTCOMES			
4. Explain the operation of P, I, D, and PID controllers, and be able to simulate them and tune them using classical methods [
	 5. Explain and implement feedback, feed forward, ratio, and cascade control architectures [e]. 6. Apply control strategies to address safety and environmental issues [j,k]. 		
	7. Apply optimization to address design and economic considerations [j,k].		
ASSESSMENT	1. Home and class problems assess outcomes 1-7		
TOOLS	2. Exams assess outcomes 1-7		
	3. End-of-term course evaluation provides student self-assessment of outcomes 1-7		