Skip to Main Content
  • Home
  • About
    • About CHE
    • History
      • Department History
      • Department Chairs
      • Faculty Textbooks
    • Facts and Figures
    • Department Publications
    • Visit Us
    • Contact Us
  • Calendar
  • News
    • Chemical Engineering News
    • In the News
  • Research
    • Department Research
    • Research Areas
      • CHE Research Areas
      • Catalysis and Reactions
      • Biomolecular Engineering
      • Cellular Engineering
      • Sustainable Energy
      • Computing and Simulation
      • Nanotechnology
      • Materials
      • Microfabricated Systems
      • Polymers and Complex Fluids
    • Research Programs for Undergraduates
      • Undergraduate Research Opportunities
      • Work in Faculty Labs
    • Partners in Industry
  • People
    • Faculty
      • All Faculty
      • Core Faculty
      • Affiliated Faculty
      • Research Faculty
      • Adjunct Faculty
      • Emeritus Faculty
    • Staff
    • Student Support
    • Faculty and Staff Directory
    • Postdoctoral Research Fellows
    • Graduate Students
  • Graduate
    • Graduate
    • Program
      • Graduate Program
      • Graduate Degree Requirements
      • SUGS
      • Additional Options
      • Doctoral Candidacy Exam
      • Thesis Proposal Exam
      • Doctoral Committee
    • Prospective Students
      • Applying to Graduate Program
      • Admissions Requirements
      • Admissions Timeline
      • TOEFL & GRE
      • Financial Support
    • Current Graduate Students
      • Current Students
      • GSI Positions
    • Graduate Contacts
    • Why Michigan?
  • Undergraduate
    • Undergraduate
    • Program
      • Undergraduate Program
      • Mission
      • Incorporating Outreach
      • Program Improvement
      • Enrollment Data
    • Join Chemical Engineering
    • Degree Requirements
      • Undergraduate Degree Requirements
      • Intellectual Breadth
      • Courses & Course Profiles
    • Minors, Concentrations and Specialized Studies
    • Dual and Combined Degrees
    • Masters and SUGS Programs
    • Jobs and Research
      • Jobs and Research
      • Cooperative Education
    • Student Resources
      • Student Resources
      • Scholarships
      • FAQ
    • Student Groups
      • Student Organizations
      • Funding for Group
    • Undergraduate Contacts
  • Careers
    • Career Information
    • What is a Chemical Engineer?
    • Career Pathways
    • Employers of Chemical Engineers
    • Professional Engineer License
    • Recruit Talent
  • Alumni
    • CHE Alumni
    • Stay Informed
      • Stay Informed
      • Alumni Updates
      • Alumni Profiles
    • Reconnect
      • Reconnect
      • Flat Charlie
    • Giving
Chemical Engineering
Chemical Engineering
CONNECT WITH US:
About
Research
People
Graduate
Undergraduate
Alumni
  • About
    • History
    • Facts and Figures
    • Department Publications
    • DEI Resources
    • ChE Faculty Search
    • CHE Seminar Series
    • Annual Department Events
    • Visit Us
    • Contact Us
  • Calendar
    • CHE Seminar Series
  • Research
    • Research Areas
    • Facilities
    • Research Programs for Undergraduates
    • Partners in Industry
  • News
    • In the News
  • People
    • Faculty
    • Staff
    • Student Support
    • Faculty and Staff Directory
    • Postdoctoral Research Fellows
    • Graduate Students
  • Graduate
    • Program
    • Prospective Students
    • Current Students
    • Graduate Contacts
    • Why Michigan?
    • Housing
  • Undergraduate
    • Program
    • Join Chemical Engineering
    • Degree Requirements
    • Minors and Concentrations
    • Dual and Combined Degrees
    • Masters and SUGS Programs
    • Jobs and Research
    • Student Resources
    • Student Groups
    • Undergraduate Contacts
  • Alumni
    • Stay Informed
    • Reconnect
    • Giving
  • Careers
    • What is a Chemical Engineer?
    • Career Pathways
    • Employers of Chemical Engineers
    • Professional Engineer License
    • Recruit Talent
HOME/Research/Research Areas/Microfabricated Systems
  • Research
    • Research Areas
      • Catalysis and Reactions
      • Biomolecular Engineering
      • Cellular Engineering
      • Computing and Simulation
      • Nanotechnology
      • Materials
      • Polymers and Complex Fluids
      • Sustainable Energy
      • Microfabricated Systems
    • Facilities
    • Research Programs for Undergraduates
      • Work in Faculty Labs
    • Partners in Industry

Microfabricated Systems

Nagrath Research Lab

Reducing the dimensions of flow channels, chemical reactors and separation units can offer advantages for many different chemical processes and analytical techniques. For example, Michigan chemical engineers are developing and using microfabricated devices to better understand the circulation of cancer cells, to do high-throughput synthesis, to put a chemical lab on a microchip and to design better ways to deliver drugs to targeted areas in the body.

Brendon Baker

The Baker lab studies how structure and mechanics of the cellular microenvironment guide fundamental cell processes such as migration, proliferation, and extracellular matrix synthesis. To do so, we use microfabrication technologies to create synthetic biomaterials that mimic the 3D, fibrous nature of stromal or interstitial tissues. Combined with molecular tools, live imaging, microfabrication/fluidic techniques, and multi-scale mechanical characterization, these materials allow us to model, study, and control the interactions between cells and their surroundings. Ultimately, we aim to 1) shed insight into extracellular matrix-mediated diseases such as cancer and fibrosis and 2) use material cues to direct cell function for tissue engineering and regenerative medicine applications.

Baker Lab

Mark Burns

Professor Mark Burns and his group develop lab-on-a-chip devices for genetic analysis, blood tests, and diagnosing influenza and bacterial infections. The group’s studies in microfluidic systems include the development of modular systems, controlling flow with sound, and controlling pressure through temperature.

Burns Group

Omolola Eniola-Adefeso

Professor Lola Eniola-Adefso and her group develop microfabricated systems to model blood vessels for evaluating the performance of vascular-targeted drug carriers in physiological blood flows.

Cell Adhesion and Drug Delivery Lab

Erdogan Gulari

During the past decade, Professor Erdogan Gulari and his group have developed new microfluidic systems and new chemistries to synthesize in a massively parallel fashion oligonucleotides or short genes and peptides on chips. These have led to the formation of several start-up companies in related areas. Currently, the expertise developed in DNA synthesis is being used for making synthetic gene libraries and peptide libraries for sequencing, gene expression analysis, epitope arrays and discovery of new antimicrobial peptides for use as coatings, preservatives and candidates for new drugs.

Gulari Group

Mark Kushner

Professor Mark Kushner and his group develop computer-aided design tools that help semiconductor companies manufacture microelectronics better.

Computational Plasma Science and Engineering Group

Sunitha Nagrath

Professor Sunitha Nagrath’s research focus is the development of advanced MEMS tools for understanding cell trafficking in cancer through isolation, characterization and study of circulating cell in peripheral blood of cancer patients. Her group works on isolating and studying rare cells from cancer patients. These studies will progress to the design and development of smart chips that use microfluidics and nanotechnology to make an impact in medicine and life sciences.

Nagrath Lab

Joerg Lahann

Professor Joerg Lahann’s research interest is focused on the development of active, multi-functional bio-interfaces, which are applicable to a range of biomedical applications. His group’s recent advances in the molecular design of active nanostructures include the introduction of reactive coatings, reversibly switching surfaces and anisotropic nanoparticles that support the vision of smart interfaces and act as templates in time-controlled surface interactions.

Lahann Lab

Albert Liu

Arming nano-electronics with mobility extends artificial systems into traditionally inaccessible environments. Quantum-confined nanoparticles (0D), carbon nanotubes (1D), graphene (2D) and other crystalline materials with well-defined lattice structures can be incorporated into polymer microparticles (i.e., colloidal electronics), granting them unique electronic functions. The Liu laboratory seeks to advance device capabilities for individual colloidal electronic particles, and explores higher-order assemblies of these building-blocks into hierarchical colloidal electronic matter. This research program, positioned at the intersection between materials design, chemical catalysis, and electronic device fabrication, aims to address one central challenge: Can we build materials the way nature builds us?

Timothy Scott

Professor Timothy Scott and his group are developing ways to use free radicals for the microfabrication of polymer-based devices, which may be useful in medicine or energy capture and storage.

Scott Polymer Dojo

Sharon Glotzer
Anthony C. Lembke Department Chair of Chemical Engineering; John Werner Cahn Distinguished University Professor of Engineering; and Stuart W. Churchill Collegiate Professor of Chemical Engineering

Chemical Engineering

sglotzer@umich.edu
(734) 615-6296
3074 H.H.Dow
College of Engineering | University of Michigan
Chemical Engineering

3074 H.H. Dow

2300 Hayward Street

Ann Arbor, MI 48109-2136

Phone: (734) 764-2383

Fax: (734) 763-0459

cheme@umich.edu

Give to Chemical Engineering »

Follow The College

Facebook

Twitter

Instagram

LinkedIn

YouTube

ALWAYS INNOVATING. FOREVER VALIANT.

The Michigan Engineering Bicentennial Web Project is a multimedia story collection.

See all stories »

  • © The Regents of the University of Michigan Ann Arbor, MI 48109 USA
  • Privacy Policy
  • Non-Discrimination Policy
  • Campus Safety
  • U-M Gateway
  • Give Feedback