• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Chemical Engineering
  • All Events
  • Seminars
  • Contact Us
  • Giving
  • About
    • Mission, Vision and Values
    • ChE Advisory Board
    • Diversity, Equity and Inclusion
    • Reporting Concerns and Misconduct
    • Faculty Search
    • Contact Us
  • News
  • Research
    • Research Areas
      • Biomolecular Engineering
      • Catalysis and Reaction
      • Cellular Engineering
      • Computing and Simulation
      • Materials
      • Microfabricated Systems
      • Nanotechnology
      • Polymers and Complex Fluids
      • Sustainable Energy
    • Facilities
    • Research Programs for Undergraduates
    • Partners in Industry
  • People
    • Administration
    • All Faculty
    • Core Faculty
    • Doctoral Students
    • Master’s Students
    • Postdoctoral Research Fellows
    • Staff
  • Graduate
    • Program
      • Graduate Degree Requirements
      • SUGS
      • Additional Options
      • Doctoral Candidacy Exam
      • Thesis Proposal Exam
      • Doctoral Committee
    • Prospective Students
      • Admissions Requirements
      • Admissions Timeline
      • TOEFL and GRE
      • Financial Support
      • Recruitment
      • Frequently Asked Questions
    • Current Students
      • Diversity, Equity and Inclusion
      • GSI Positions
      • Curricular Practical Training for F-1 Students
      • ChE Graduate Student Committee
    • Graduate Contacts
    • Why Michigan?
    • Housing
  • Undergraduate
    • Program
      • Mission
      • Incorporating Outreach
      • Program Improvement
      • Enrollment Data
    • Join Chemical Engineering
    • Degree Requirements
      • Intellectual Breadth
      • Courses & Course Profiles
    • Minors, Concentrations and Specialized Studies
    • Dual and Combined Degrees
    • Masters and SUGS Programs
    • Jobs and Research
      • Cooperative Education
    • Student Resources
      • Funding for Travel
      • Scholarships
      • Frequently Asked Questions
    • Student Groups
      • Funding for Groups
    • Undergraduate Contacts
  • Alumni
    • Stay Connected
    • Get Involved
    • Giving
    • Recruit Talent
    • Alumni Profiles
    • All Events
    • Seminars
    • Contact Us
    • Giving

Nanotechnology: Theory predicts new type of bond that assembles nanoparticle crystals

Turns out entropy binds nanoparticles a lot like electrons bind chemical crystals.

Written by: Michigan Engineering

January 19, 2022

Thi VoThi Vo
Chemical Engineering Postdoctoral Research Fellow
portraitSharon Glotzer
Anthony C. Lembke Department Chair of Chemical Engineering, John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of material science and engineering, macromolecular science and engineering, and physics at U-M

EXPERTS:

Entropy, a physical property often explained as “disorder,” is revealed as a creator of order with a new bonding theory developed at the University of Michigan and published in the Proceedings of the National Academy of Sciences. 

Engineers dream of using nanoparticles to build designer materials, and the new theory can help guide efforts to make nanoparticles assemble into useful structures. The theory explains earlier results exploring the formation of crystal structures by space-restricted nanoparticles, enabling entropy to be quantified and harnessed in future efforts. 

And curiously, the set of equations that govern nanoparticle interactions due to entropy mirror those that describe chemical bonding. Sharon Glotzer, the Anthony C. Lembke Department Chair of Chemical Engineering, and Thi Vo, a postdoctoral researcher in chemical engineering, answered some questions about their new theory.

What is entropic bonding?

Glotzer: Entropic bonding is a way of explaining how nanoparticles interact to form crystal structures. It’s analogous to the chemical bonds formed by atoms. But unlike atoms, there aren’t electron interactions holding these nanoparticles together. Instead, the attraction arises because of entropy. 

Oftentimes, entropy is associated with disorder, but it’s really about options. When nanoparticles are crowded together and options are limited, it turns out that the most likely arrangement of nanoparticles can be a particular crystal structure. That structure gives the system the most options, and thus the highest entropy. Large entropic forces arise when the particles become close to one another. 

By doing the most extensive studies of particle shapes and the crystals they form, my group found that as you change the shape, you change the directionality of those entropic forces that guide the formation of these crystal structures. That directionality simulates a bond, and since it’s driven by entropy, we call it entropic bonding.

A rendering of the nanoparticle crystals
The density of the pseudoparticles around nanoparticle shapes resembles the electron density in the electron orbitals of atoms. This new way of understanding how entropy creates attractive forces between nanoparticles could accelerate the development of nanomaterials with designed properties. Credit: Thi Vo, Glotzer Group, University of Michigan

Why is this important?

Glotzer: Entropy’s contribution to creating order is often overlooked when designing nanoparticles for self-assembly, but that’s a mistake. If entropy is helping your system organize itself, you may not need to engineer explicit attraction between particles—for example, using DNA or other sticky molecules—with as strong an interaction as you thought. With our new theory, we can calculate the strength of those entropic bonds.

While we’ve known that entropic interactions can be directional like bonds, our breakthrough is that we can describe those bonds with a theory that line-for-line matches the theory that you would write down for electron interactions in actual chemical bonds. That’s profound. I’m amazed that it’s even possible to do that. Mathematically speaking, it puts chemical bonds and entropic bonds on the same footing. This is both fundamentally important for our understanding of matter and practically important for making new materials.

Electrons are the key to those chemical equations though. How did you do this when no particles mediate the interactions between your nanoparticles?

Glotzer: Entropy is related to the free space in the system, but for years I didn’t know how to count that space. Thi’s big insight was that we could count that space using fictitious point particles. And that gave us the mathematical analogue of the electrons.

Vo: The pseudoparticles move around the system and fill in the spaces that are hard for another nanoparticle to fill—we call this the excluded volume around each nanoparticle. As the nanoparticles become more ordered, the excluded volume around them becomes smaller, and the concentration of pseudoparticles in those regions increases. The entropic bonds are where that concentration is highest. 

In crowded conditions, the entropy lost by increasing the order is outweighed by the entropy gained by shrinking the excluded volume. As a result, the configuration with the highest entropy will be the one where pseudoparticles occupy the least space.

The research is funded by the Simons Foundation, Office of Naval Research, and the Office of the Undersecretary of Defense for Research and Engineering. It relied on the computing resources of the National Science Foundation’s Extreme Science and Engineering Discovery Environment. Glotzer is also the John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of material science and engineering, macromolecular science and engineering, and physics at U-M.

ALTMETRIC ATTENTION SCORE

A theory of entropic bonding

Explore: Chemical Engineering Materials Nanotechnology Sharon Glotzer

Footer

  • All Events
  • Seminars
  • Contact Us
  • Giving
  • Michigan Engineering
  • Strategic Vision
  • Graduate and Professional
  • Undergraduate
  • Michigan Engineering Research News

  • Facebook
  • LinkedIn
  • Twitter

© 2023 The Regents of the University of Michigan Ann Arbor, MI 48109 USA Privacy Policy | Non-Discrimination Policy | Campus Safety